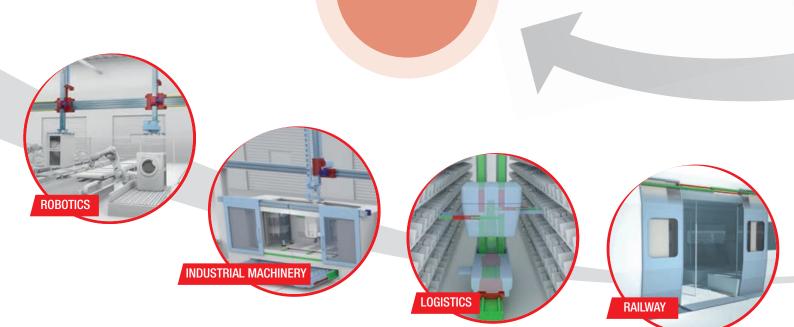


Modline


We design and produce in order to support you

An international group for technology, a local support for service

Over 40 years of know how in design and production

Values

Applications

High level technical consulting

Cross competences in several industrial sectors for an effective problem-solving

> From a full range of standard products to customer specific solutions for best perfomance

MEDICAL

INTERIORS AND ARCHITECTURE

Solutions

SPECIAL VEHICLES

0000

A complete range for linear motion which reaches every customer

Telescopic Line

Linear and curved guides with ball and roller bearings, with hardened raceways, high load capacities, self-alignment and capable of working in dirty environments.

ear Line

Telescopic guides with ball bearings,

with hardened raceways, high load capacities and high rigidity, resistant to shocks and vibrations. For partial, total or extension up to 200% of the length of the guide.

Linear actuators with different drive and guide configurations,

available with belt, screw or rack and pinion drives to cover a wide range of precision and speed requirements. Guides with bearings or recirculating ball systems for varying load capacities and environments.

A global provider of solutions for applications for linear motion

Actuator System Line

Integrated actuators for industrial automation,

wide ranging solutions that span industrial sectors: from machinery servo systems to high precision assembly systems, packaging lines and high speed production lines. Evolved from Actuator Line series in order to meet the most demanding customer needs.

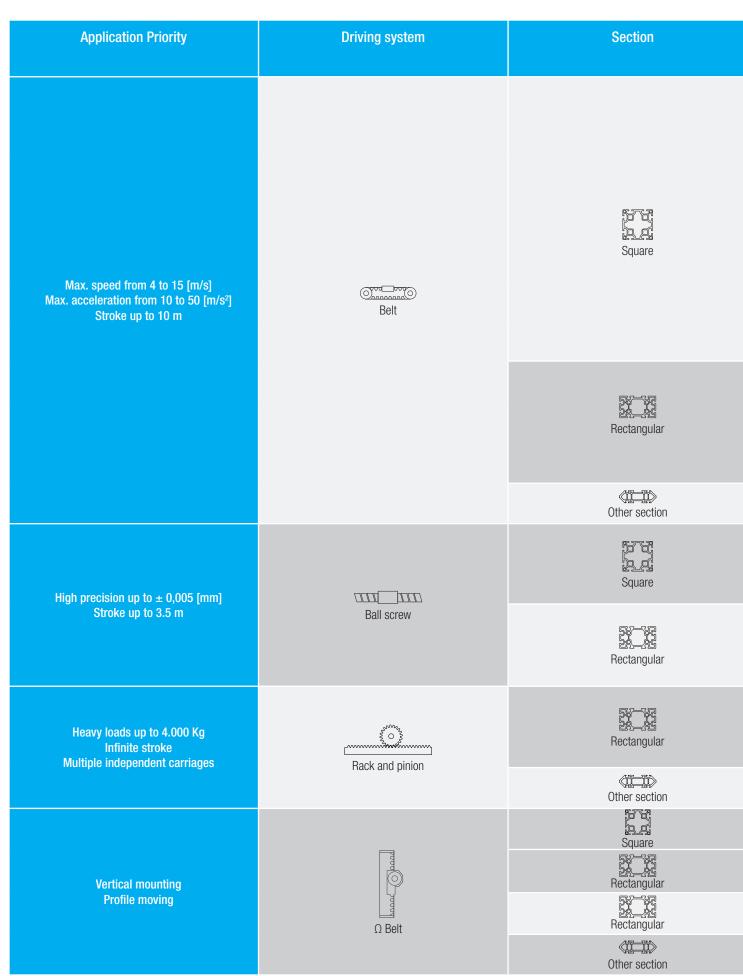
Modline

1 MCR/MCH series

MCR/MCH series description	ML-3
The components	ML-4
The linear motion system	ML-5
MCR 65	ML-6
MCH 65	ML-7
MCR 80	ML-8
MCH 80	ML-9
MCR 105	ML-10
MCH 105	ML-11
Linear units in parallel, Accessories	ML-12
Insertable nuts and plates	ML-13
Assembly brackets	ML-14
Ordering key	ML-15
2 TCR/TCS series	
TCR/TCS series description	ML-17
The components	ML-18
The linear motion system	ML-19
TCR 140	ML-20
TCS 140	ML-21
TCR 170	ML-22
TCS 170	ML-23

TCS 170		
TCR 200		
TCS 200		
TCR 220		
TCS 220		
TCR 230		
TCS 230		
TCR 280		
100 201		

ML-28 ML-29 ML-30 ML-31 TCS 280 TCR 360 ML-32 TCS 360 ML-33 Lubrication ML-34 Accessories ML-35 Assembly brackets ML-36 Alignment nuts ML-37 Ordering key ML-38


ML-24 ML-25 ML-26 ML-27

3 ZCR/ZCH series	
ZCR/ZCH series description	ML-40
The components	ML-41
The linear motion system	ML-42
ZCH 60	ML-43
ZCR 90	ML-44

ZCH 90	ML-45
ZCR 100	ML-46
ZCH 100	ML-47
ZCR 170	ML-48
ZCH 170	ML-49
ZCR 220	ML-50
ZCH 220	ML-51
Lubrication	ML-52
Accessories	ML-53
Alignment nuts	ML-54
Ordering key	ML-56
4 714011	
4 ZMCH series	
ZMCH series description	ML-57
The components	ML-58
The linear motion system	ML-59
ZMCH 105	ML-60
Lubrication	ML-61
Accessories	ML-62
Ordering key	ML-63
Multiaxis systems	ML-64

Static load and service life	SL-2
Static load and service life Uniline	SL-4
Data sheet	SL-9

Pre-selection overview

* Optimal reliability in dirty environments thanks to plastic compound coated rollers

Protection	Rollon solution						
	Product Fan	nily	Product				
	Plus System		ELM				
Protected	Modline	No.	MCR/MCH with protection				
	Eco System		ECO				
Semi-protected	Modline	No.	MCR/MCH				
	Uniline System	B	UNILINE				
Open	Smart System	0	E-SMART				
Protected with suction	Clean Room System		ONE				
Protected	Plus System		ROBOT				
Open	Smart System	10	R-SMART				
opon	Modline	- Co	TCR/TCS				
Open*	Speedy Rail A		SAB				
			TV				
	Precision System	and the second s	TVS				
Semi-protected			Π				
			TH				
Open	Tecline	No.	PAS				
opon.			PAR				
Open*	Speedy Rail A		SAR				
Semi-protected	Smart System	101	S-SMART				
Semi-protected	Plus System		SC				
Open	Modline	Į.	ZCR/ZCH				
Open*	Speedy Rail A	-	ZSY				

Technical features overview

	Reference		Sec	tion		Driving			
Pr	oduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	Protection
		ELM			Openandanoo				Protected
Plus System		ROBOT			Orono porto			•	Protected
		SC			hand Open			•	Semi-protected
Clean Room System	No.	ONE	LT)		Oronopanao			•	Protected with suctions
	0	E-SMART			Orange and O				
Smart System	10	R-SMART			Onu nor				
	No III	S-SMART	Ţ		Land Open				Semi-protected
Eco System		ECO	L]		Oronomano)				Semi-protected
Uniline System	E	A/C/E/ED/H			Oronononoo				Semi-protected
	and the second	MCR MCH	Ţ		Oronononoo			•	Semi-protected
	- Ce	TCR TCS			Oronononoo			•	
Modline	ŀ	ZCR ZCH			hand. Open			•	
		ZMCH	LT.		Land Open			•	

Reported data must be verified according to the application. * Longer stroke is available for jointed version

Size		x. load capa per carriage [N]			. static moi per carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)	
	F _x	Fy	Fz	M _x	M _y	M _z	[m/s]	[m/s²]	[mm]	[mm]	
50-65-80-110	4980	129400	129400	1392	11646	11646	5	50	± 0,05	6000*	FLS
100-130- 160-220	9545	258800	258800	22257	28986	28986	5	50	± 0,05	6000*	
65-130-160	6682	153600	153600	13555	31104	31104	5	50	± 0,05	2500	
50-65-80-110	4980	104800	104800	1126	10532	10532	5	50	± 0,05	6000*	C F S
30-50-80-100	4980	130860	130860	1500	12039	12039	4	50	± 0,05	6000*	00.00
120-160-220	9960	258800	258800	21998	28468	28468	4	50	± 0,05	6000*	
50-65-80	2523	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4565	76800	76800	722	7603	7603	5	50	± 0,05	6000*	ES
40-55-75	19360	11000	17400	800,4	24917	18788	7	15	± 0,05	5700*	US
65-80-105	3984	51260	51260	520	5536	5536	5	50	± 0,1	10100*	
140-170 200-220-230 280- 360	9960	266400	266400	42624	61272	61272	5	50	± 0,1	11480	
60-90-100 170-220	7470	174480	174480	12388	35681	35681	4	25	± 0,1	2500	
105	4980	61120	61120	3591	10390	10390	3	25	± 0,1	2100	

L S

C R S S S

E S

U S M L

Technical features overview

	Reference	Sec	Section		Driving			Protection	
Product Family		Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	PIOLECTION
		ТН	Ţ			an m			Semi-protected
Precision		TT	LJ)			an(_)nn			Semi-protected
System		τv	J			an(_)nn			Semi-protected
		TVS				ant mu		•	Semi-protected
Tecline	No.	PAR PAS	LT)				<u>(</u>)	•	
		SAB			Ounnanao Dud buyo				
Speedy Rail A	-	ZSY			hand Openad				
	*	SAR							

 \mathbf{v}

Reported data must be verified according to the application. * Longer stroke is available for jointed version

Size	Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]			Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)
CILO	F _x	Fy	Fz	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]
70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0,005	1500
100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0,005	3000
60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0,01	3000
170-220	66300	258800	258800	19410	47360	47360	1	5	± 0,02	3500
118-140-170- 200-220-230- 280-360	10989	386400	386400	65688	150310	150310	4	10	± 0,05	10800*
60-120- 180-250	4565	3620	3620	372	362	362	15	10	± 0,2	7150
180	4980	2300	2600	188	806	713	8	8	± 0,2	6640
120-180-250	3598	3620	3620	372	453	453	3	10	± 0,15	7150*

MCR/MCH series $// \sim$

MCR/MCH series description

Fig. 1

The MCR/MCH units are linear actuators made of a self-supporting extruded aluminum frame and are driven by a polyurethane belt with AT metric profile steel inserts.

- Reduced weight ensured by the light frame and the aluminum sliders
- Three different sizes available: 65mm, 80mm, 105mm
- High sliding speed

MCR

Featuring four + four rollers with a Gothic arch outer profile and flat outer profile, sliding on hardened steel bars placed inside the profile.

MCH

Featuring a recirculating ball linear guide rail placed inside the profile.

The components

Extruded bodies

The anodized aluminum extrusion used for the profile of the Rollon MCR/ MCH series linear units was designed and manufactured by industry experts to optimise weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complaint with EN 755-9 standards. Optimisation of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The driving belt is guided by specific slots in the aluminum extruded body thus covering the inside components.

Carriage

The carriage of the Rollon MCR/MCH series linear units is made of anodized aluminum. Two different length carriages are available for size 80 and 105.

Driving belt

The Rollon MCR/MCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainde	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10 ⁻⁶	W	J	Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		
2.70	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	A	HB
N mm ²	N mm ²	%	—
205	165	10	60-80
			Tab. 3

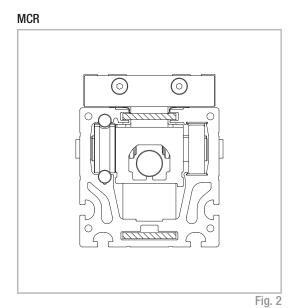
The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

MCR with gothic arch bearing guides

- Hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with four + four bearing assemblies, four having a gothic arch groove machined into its outer race, to run on the steel rods, and four having flat outer ring.
- The bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- The driving belt is supported by the entire length of the profile to avoid deflection as well as to protect the linear guide.

MCH with ball bearing guides


- A recirculating ball guide with high load capacity is mounted in a dedicated seat inside the aluminum body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the appropriate amount of grease, thus promoting a long maintenance interval.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance Free (dependent on application)

The linear motion system described above offers:

- High permissible bending moments
- High speed and acceleration
- High load capacity
- Low friction
- Long life
- Low noise

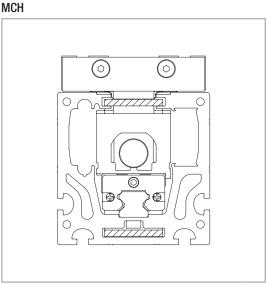


Fig. 3

Μ

MCR 65 >

MCR 65 Dimension

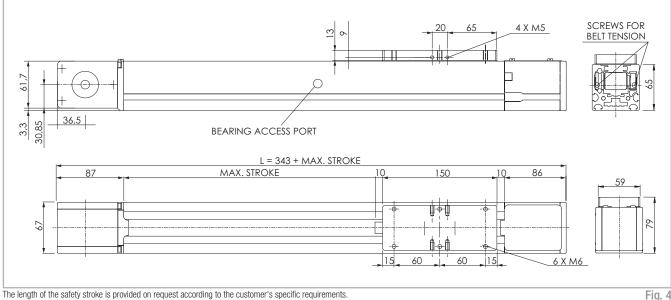


Fig. 4

Technical data

	Туре
	MCR 65
Max. useful stroke length [mm] *1	5830
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	20
Type of belt	32 AT 05
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	0.87
Zero travel weight [kg]	3.7
Weight for 100 mm useful stroke [kg]	0.475
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm ²]	267443
Rail size [mm]	Ø8
1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints	Tab. 4

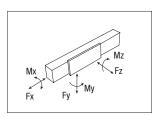
*1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

MCR 65 - Load capacity

Туре	F [N	x Ň]	F _y [N]	F _z [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 65	1344	960	1964	2192	9195	65.1	132	93.9

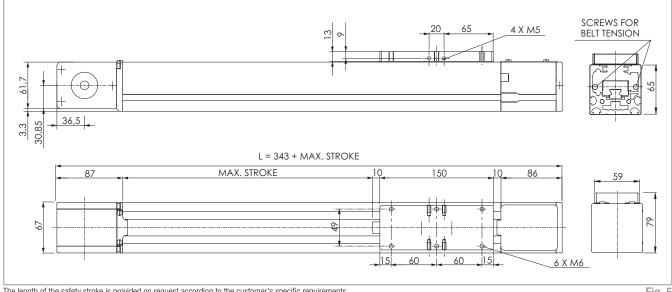
See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	ا _ہ [10 ⁷ mm ⁴]
MCR 65	804,878	678,230	1,483,108
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 65	32 AT 05	32	0.105
			Tab. 6

Belt length (mm) = 2 x L - 69

MCH 65 >

MCH 65 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

Technical data

	Туре
	MCH 65
Max. useful stroke length [mm] *1	5830
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	30
Type of belt	32 AT 05
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	0.9
Zero travel weight [kg]	3.85
Weight for 100 mm useful stroke [kg]	0.58
Starting torque [Nm]	0.3
Moment of inertia of pulleys [g mm ²]	267443
Rail size [mm]	15
1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints	Tab. 8

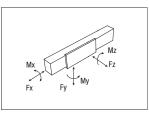
*1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints
 *2) Positioning repeatability is dependent on the type of transmission used

MCH 65 - Load capacity

Туре	F [N	: x V]	F [N	F F F [[N] [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 65	1344	960	30560	19890	30560	240	1406	1406

See verification under static load and lifetime on page SL-2 and SL-3

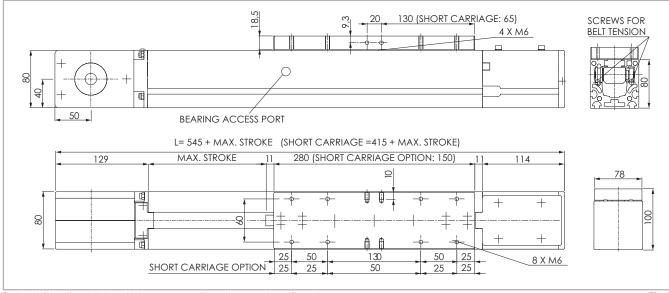
Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
MCH 65	804,878	678,230	1,483,108
			Tab. 9

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 65	32 AT 05	32	0.105
			Tab. 10


Belt length (mm) = $2 \times L - 69$

Μ

MCR 80

MCR 80 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.6

Technical data

	Ту	ре
	MCR 80	MCR 80 C
Max. useful stroke length [mm] *1	5700	5830
Max. positioning repeatability [mm]*2	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	20	20
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 22	Z 22
Pulley pitch diameter [mm]	70.03	70.03
Carriage displacement per pulley turn [mm]	220	220
Carriage weight [kg]	2.2	1.25
Zero travel weight [kg]	8.8	6.95
Weight for 100 mm useful stroke [kg]	0.7	0.7
Starting torque [Nm]	0.7	0.7
Moment of inertia of pulleys [g mm ²]	1174346	1174346
Rail size [mm]	Ø8	Ø8
1) It is possible to obtain strokes up to 9000 mm by means of special Roll	on joints	Tab. 12

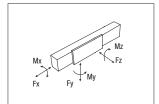
*1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

MCR 80 - Load capacity

	uony							
Туре	F []	: × V]	F _y [N]	F [1	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 80	2656	1760	1964	2579	9195	85.4	361	193
MCR 80 C	2656	1760	1964	2579	9195	85.4	156	93.9

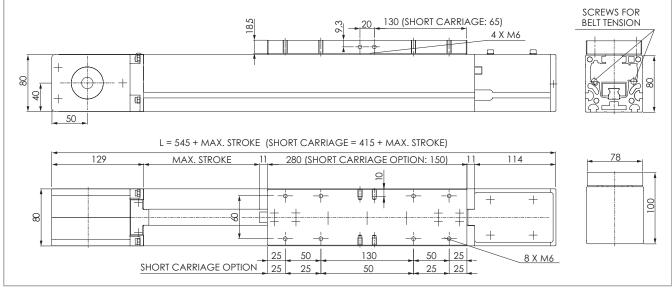
See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
MCR 80	1,791,166	1,468,518	3,259,684
			Tab 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 80	32 AT 10	32	0.185
			Tab. 14

Belt length (mm) = $2 \times L - 182$ Short carriage (mm) = $2 \times L - 52$

MCH 80 >

MCH 80 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 7

Technical data

	Ту	pe
	MCH 80	MCH 80 C
Max. useful stroke length [mm] *1	5700	5830
Max. positioning repeatability [mm]*2	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	40	40
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 22	Z 22
Pulley pitch diameter [mm]	70.03	70.03
Carriage displacement per pulley turn [mm]	220	220
Carriage weight [kg]	2.45	1.3
Zero travel weight [kg]	9.4	7.1
Weight for 100 mm useful stroke [kg]	0.79	0.79
Starting torque [Nm]	0.9	0.9
Moment of inertia of pulleys [g mm ²]	1174346	1174346
Rail size [mm]	15	15
1) It is possible to obtain strokes up to 9000 mm by means of special Rollo	on joints	Tab. 16

*2) Positioning repeatability is dependent on the type of transmission used

MCH 80 - Load capacity

Туре	[F N]	F [1	: ¥ V]	F [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 80	2656	1760	30560	19890	30560	240	3285	3285
MCH 80 C	2656	1760	15280	9945	15280	120	90	90
See verification under static load and lifetime on page SL-2 and SL-3						Tab. 19		

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
MCH 80	1,791,166	1,468,518	3,259,684
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 80	32 AT 10	32	0.185
			T I 40

Tab. 18

Belt length (mm) = 2 x L - 182 Short carriage (mm) = 2 x L - 52

MCR 105 >

MCR 105 Dimension

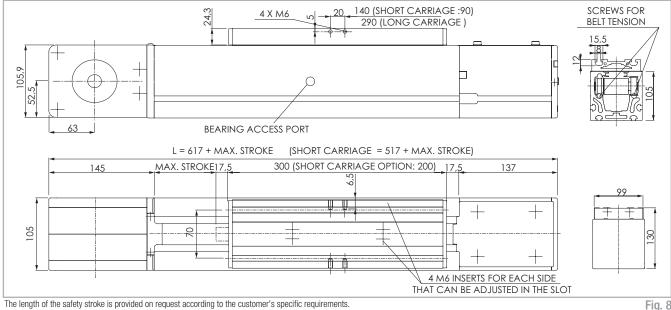
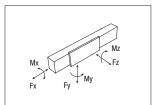


Fig. 8

Technical data

	Туре		
	MCR 105	MCR 105 C	
Max. useful stroke length [mm]	10100	10100	
Max. positioning repeatability [mm]*1	± 0.1	± 0.1	
Max. speed [m/s]	5	5	
Max. acceleration [m/s ²]	20	20	
Type of belt	40 AT 10	40 AT 10	
Type of pulley	Z 29	Z 29	
Pulley pitch diameter [mm]	92.31	92.31	
Carriage displacement per pulley turn [mm]	290	290	
Carriage weight [kg]	3.51	2.56	
Zero travel weight [kg]	17.15	14.9	
Weight for 100 mm useful stroke [kg]	1.2	1.2	
Starting torque [Nm]	1.2	1.2	
Moment of inertia of pulleys [g mm ²]	4482922	4482922	
Rail size [mm]	Ø10	Ø10	
1) Positioning repeatability is dependent on the type of transmission used		Tab. 20	

Moments of inertia of the aluminum body

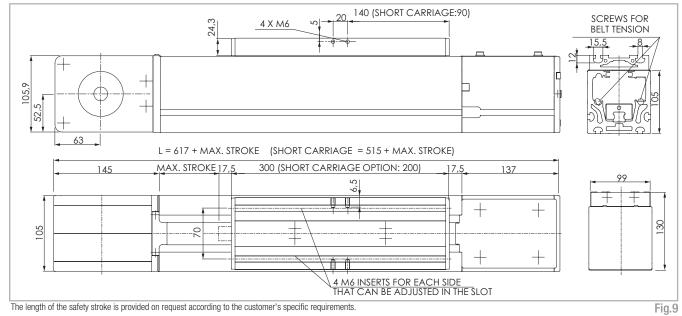

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
MCR 105	4,476,959	5,675,808	10,152,767
			Tab. 21

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 105	40 AT 10	40	0.231
			Tab. 22

Belt length (mm) = 2 x L - 165 Short carriage (mm) = $2 \times L - 65$


MCR 105 - Load capacity

Туре	F [N	: × V]	F _y [Ň]	F []	z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 105	3984	2640	4250	7812	26997	340	1033	417
MCR 105 C	3984	2640	4250	7812	26997	340	544	250

See verification under static load and lifetime on page SL-2 and SL-3

MCH 105

MCH 105 Dimension

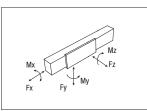
Technical data

	Туре		
	MCH 105	MCH 105 C	
Max. useful stroke length [mm]	10.100	10.100	
Max. positioning repeatability [mm]*1	± 0.1	± 0.1	
Max. speed [m/s]	5	5	
Max. acceleration [m/s ²]	50	50	
Type of belt	40 AT 10	40 AT 10	
Type of pulley	Z 32	Z 32	
Pulley pitch diameter [mm]	92.31	92.31	
Carriage displacement per pulley turn [mm]	290	290	
Carriage weight [kg]	3.5	2.3	
Zero travel weight [kg]	17.5	14.4	
Weight for 100 mm useful stroke [kg]	1.36	1.36	
Starting torque [Nm]	1.5	1.5	
Moment of inertia of pulleys [g mm ²]	4482922	4482922	
Rail size [mm]	20	20	
1) Positioning repeatability is dependent on the type of transmission used		Tab. 24	

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	ا _و [10 ⁷ mm⁴]
MCH 105	4,476,959	5,675,808	10,152,767
			Tab. 25

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

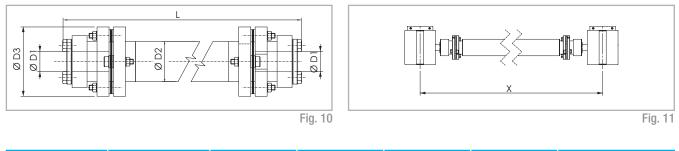
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 105	40 AT 10	40	0.231

Tab. 26

Μ

Belt length (mm) = 2 x L - 165 Short carriage (mm) = 2 x L - 65

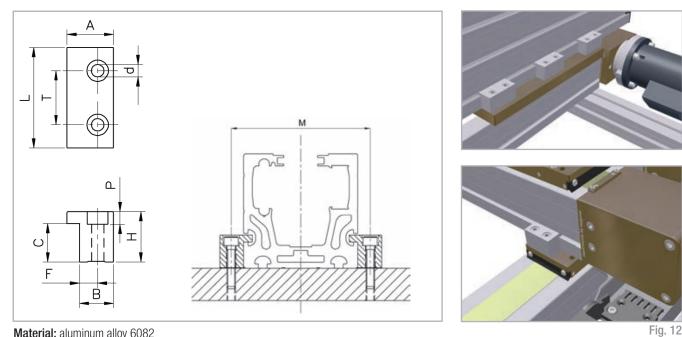
MCH 105 - Load capacity


Туре	F [1	: x V]	F [1	i V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 105	3984	2640	51260	36637	51260	520	5536	5536
MCH 105 C	3984	2640	25630	18319	25630	260	190	190

See verification under static load and lifetime on page SL-2 and SL-3

Linear units in parallel

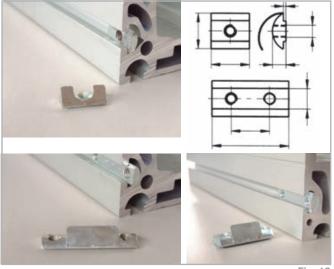
Synchronisation kit for use of MCR/MCH linear units in parallel


When movement consisting of two linear units in parallel is essential, a synchronisation kit must be used. The kit contains original Rollon blade type precision joints complete with tapered splines and hollow aluminum drive shafts.

Unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
MCR/MCH 65	AP 12	12	25	45	GK12P1A	L= X-80 [mm]
MCR/MCH 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
MCR/MCH 105	AP 25	25	70	99	GK25P1A	L= X-130 [mm]
						Tab 00

Tab. 28

Accessories >

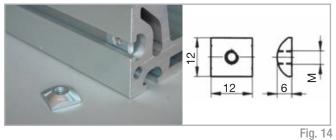


Material: aluminum alloy 6082

Unit	A	L	т	d	Н	Р	C	F	В	М	Code
MCR/MCH 65	25	50	25	6.7	20	6.8	13.5	10	18	87	415.0380
MCR/MCH 80	25	50	25	6.7	25	6.8	18.6	10	18	100	415.0760
MCR/MCH 105	30	50	25	9	30	9.5	23.6	12	22	129	415.0761

Insertable nuts and plates

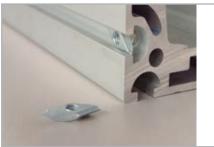
Spring nut

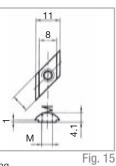


Single plate	МС	MC 80-105 MC 65			
M5	A	A32-55 B32-55			5
M6	A	32-65		B32-6	5
M8	A	32-85		B32-8	85
					Tab. 30
Double plate	МС	80-105		MC 6	5
M6	A	32-67		B32-6	57
					Tab. 31
Size					
Base module	D	Н	L	L1	Т
MC 80-105	14	7.8	20	40	30
MC 65	11	4.1	20	40	30
					Tab. 32

Fig. 13

Plate suitable for every kind of module (8 mm slot). Material: nut in galvanised steel welded to the harmonic steel spring.

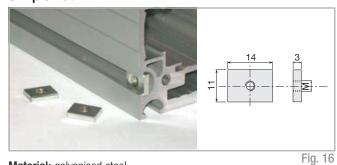

Simple nut



Thread	Code
M5	209.2431
M6	209.2432
M8	209.2433
	Tab. 33

Material: galvanised steel. Insert through the end of the profile. Suitable for series: MC 80-105

Front insertable spring nut

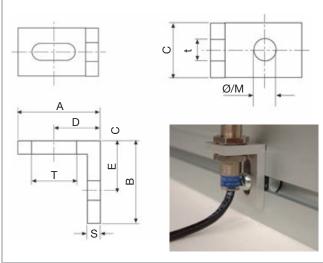


Material: galvanised steel, harmonic steel spring. To be inserted through the slot.

Suitable for series: MC 65

Thread	Code
M3	BD31-30
M4	BD31-40
M5	BD31-50
M6	BD31-60

Simple nut



Material: galvanised steel. To be inserted through the slot.

Suitable for series: MC 65

Thread	Code
M4	D32.40
M5	D32.50
M6	D32.60

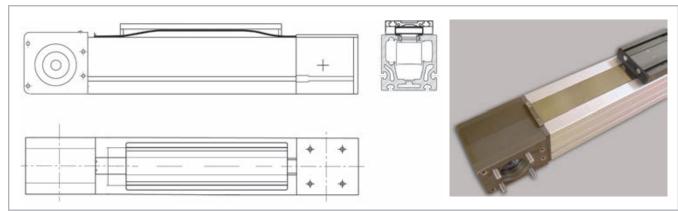
Sensor brackets

Thre	ad							Co	de
А	В	С	D	Е	S	Txt	Ø/M	Ø	М
45	45	20	25	25	5	20X6.5	6	A30-76	A 30-86
35	25	20	19	15	5	20X6.5	4	A30-54	A30-64
35	25	20	19	15	5	20X6.5	5	A30-55	A30-65
35	25	20	19	15	5	20X6.5	6	A30-56	A30-66
25	25	15	14	15	4	13.5X5.5	3	B30-53	B30-63
25	25	14	14	15	4	13.5X5.5	4	B30-54	B30-64
25	25	15	14	15	4	13.5X5.5	5	B30-55	B30-65
25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66
Suitab	le for a	all the	modu	les					Tab. 36

Fig. 17

Steel strip protection for series MCR/MCH 80-105

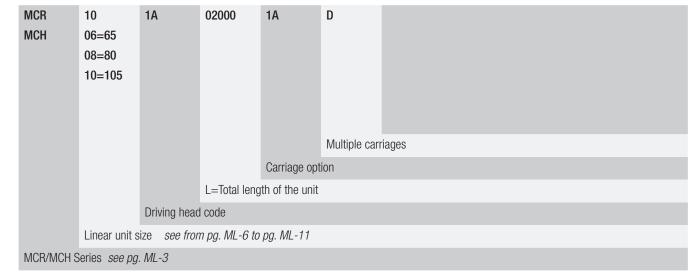
Material: Stainless steel foil.


Optional: For additional protection from dust and debris, a magnetic seal strip can be added to the profile to cover the belt way.

Due to the magnetic strip, it is best to avoid use in the presence of ferrous debris.

 $\mathbf{Ø} = \mathsf{Passing} \ \mathsf{through} \ \mathsf{hole} \ \mathsf{version}$

Material: natural, anodized anticorodal alloy.



Configure Actuator

Identification codes for the MCR/MCH series

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left

Left / right orientation

	∇	
		Right

TCR/TCS series // V

TCR/TCS series description

The TCR/TCS series linear units are particularly suitable for: heavy loads, pulling and pushing very heavy weights, demanding work cycles, possible cantilever or gantry mounting and operations in industrial automated lines.

The extruded and anodized aluminum self-supporting structure with a rectangular section is available in different sizes ranging from 140 to 360 mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Multiple sliders are available to further improve load capacity.

These units are best used in applications requiring very heavy loads in extremely confined spaces, and where machines cannot be stopped to carry out ordinary maintenance.

TCR

Features a dual Prismatic Rail system.

TCS

Features a dual rail system with four recirculating ball bearing runner blocks.

Fig. 19

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon TCR/ TCS series linear units were designed and manufactured in cooperation with a leading company in this field, to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

Driving belt

The Rollon TCR/TCS series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size, and low noise. Used in conjunction

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 37

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10-9	°C
dm ³	mm ²	К	m . K	kg . K		
2.7	70	23.8	200	880-900	33	600-655
						Tab. 38

Mechanical characteristics

	Rm
N N M	
250 200 10 75	250

with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon TCR/TCS series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accommodate a vast array of applications.

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

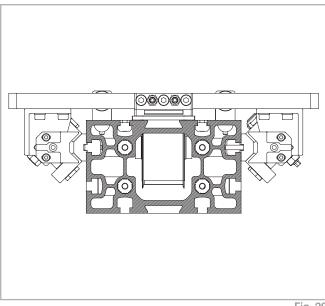
TCR with Prismatic Rail:

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution TCR is specifically dedicated for dirty environments and high dynamics in automation.

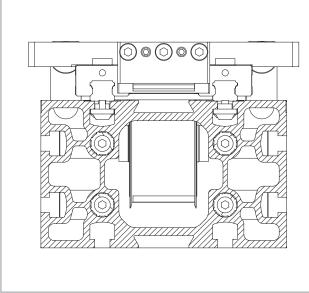
- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise

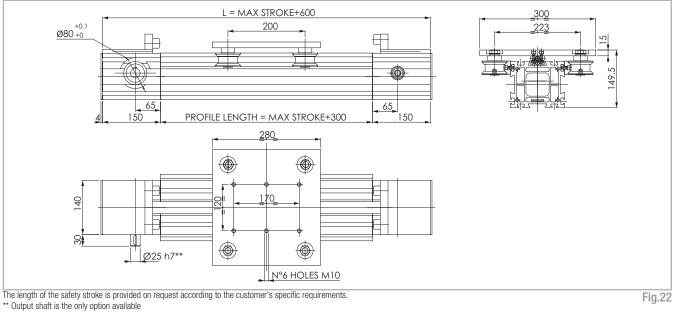

TCS with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled on preloaded ball bearing blocks that allow to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides.


The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

TCR section



TCS section

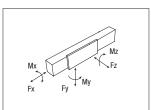
TCR 140 >

TCR 140 Dimension

Technical data

	Туре
	TCR 140
Max. useful stroke length [mm]	9700
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	32 AT 10
Type of pulley	Z 32
Pulley pitch diameter [mm]	101.86
Carriage displacement per pulley turn [mm]	320
Carriage weight [kg]	6.0
Zero travel weight [kg]	21.2
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	3
Moment of inertia of pulleys [g mm ²]	978467
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 40

Moments of inertia of the aluminum body

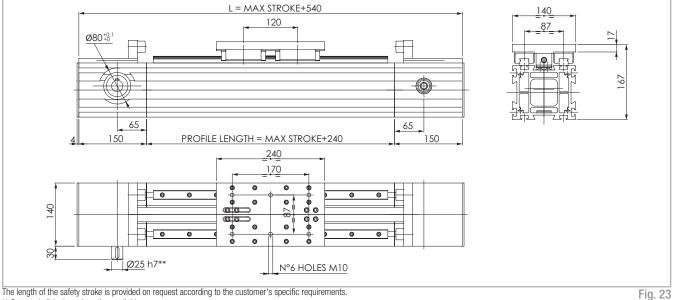

Туре	l _× [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCR 140	11,482,500	8,919,600	20,402,100
			Tab. 41

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 140	32 AT 10	32	0.185
			Tab. 42

Belt length (mm) = 2 x L- 180


TCR 140 - Load capacity

Туре	F [1	× V]	F []	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 140	3187	2170	6000	23405	4000	594	400	600

See verification under static load and lifetime on page SL-2 and SL-3

TCS 140

TCS 140 Dimension

¹ The length of the safety stroke is provided on request according to the customer's specific requirements. ** Output shaft is the only option available

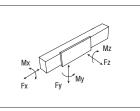
Technical data

	Туре
	TCS 140
Max. useful stroke length [mm]	9760
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 32
Pulley pitch diameter [mm]	101.86
Carriage displacement per pulley turn [mm]	320
Carriage weight [kg]	4.2
Zero travel weight [kg]	18
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm ²]	978467
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 44

Moments of inertia of the aluminum body

Туре	l x [mm⁴]	l _y [mm⁴]	ا _و [10 ⁷ mm⁴]
TCS 140	11,482,500	8,919,600	20,402,100
			Tab. 45

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

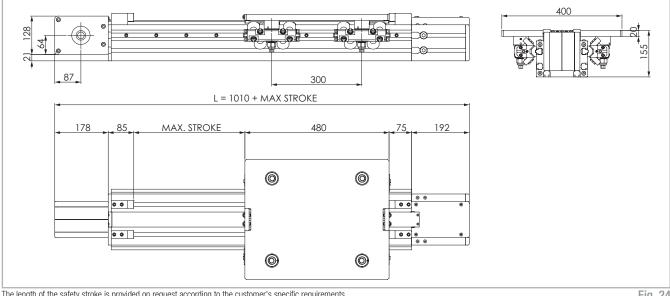
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 140	32 AT 10	32	0.185
			T I 40

Tab. 46

Μ

Belt length (mm) = 2 X L - 100

TCS 140 - Load capacity


Туре	F [1	: × V]	F [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 140	3187	2170	153600	70798	153600	6682	9216	9216

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 47

TCR 170 >

TCR 170 Dimension

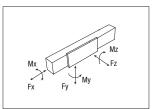
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 24

Technical data

	Туре
	TCR 170
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.2
Zero travel weight [kg]	51.1
Weight for 100 mm useful stroke [kg]	2.4
Starting torque [Nm]	4.2
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 48

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCR 170	19,734,283	9,835,781	29,570,064
			Tab. 49

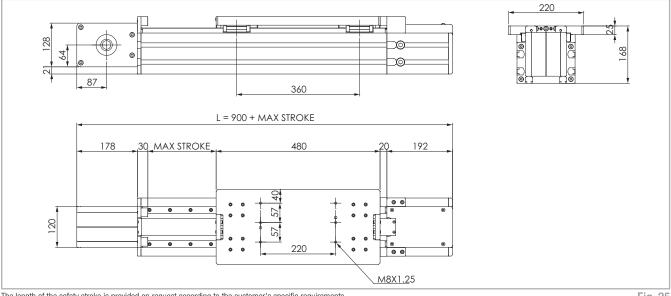
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 170	50 AT 10 HP	50	0.290
			Tab. 50

Belt length (mm) = 2 x L - 250

TCR 170 - Load capacity


Туре	F [1	: × V]	F [N	: v v]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 170	4980	3300	14142	65928	14142	1202	2121	2121
								Tab 51

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 51

TCS 170

TCS 170 Dimension

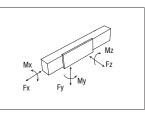
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 25

Technical data

	Туре
	TCS 170
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	8.6
Zero travel weight [kg]	34.2
Weight for 100 mm useful stroke [kg]	2,2
Starting torque [Nm]	4.8
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 52

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	l [10 ⁷ mm⁴]	
TCS 170	19,734,283	9,835,781	29,570,064	
			Tab. 53	

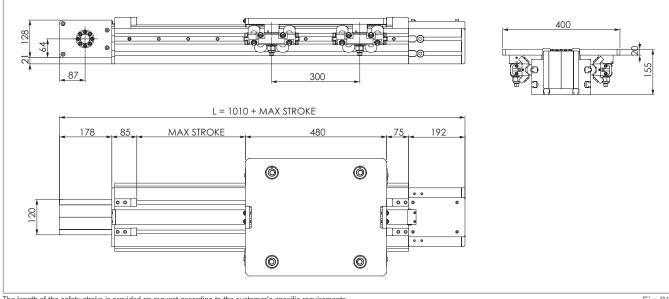
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]	
TCS 170	50 AT 10 HP	50	0.290	
			Tab. 54	

Belt length (mm) = 2 X L - 250

TCS 170 - Load capacity


Туре	F _x [N]		F [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 170	4980	3300	153600	70798	153600	7680	27648	27648

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 55

TCR 200

TCR 200 Dimension

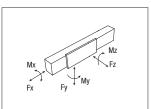
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.26

Technical data

	Туре
	TCR 200
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.3
Zero travel weight [kg]	54.5
Weight for 100 mm useful stroke [kg]	2.7
Starting torque [Nm]	4.2
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 56

Moments of inertia of the aluminum body

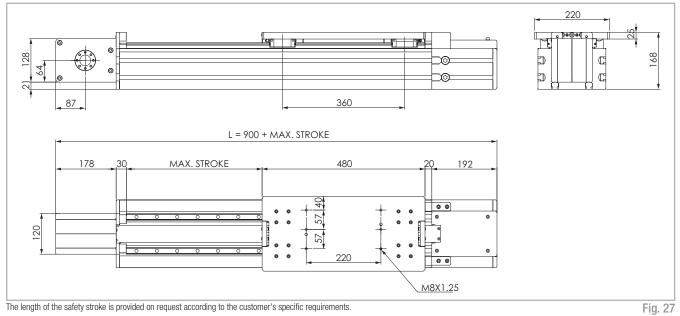

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCR 200	32,697,979	12,893,004	45,860,983
			Tab. 57

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 200	50 AT 10 HP	50	0.290
			Tab. 58

Belt length (mm) = 2 x L - 250


TCR 200 - Load capacity

Туре	F [1	: × V]	F [N	: v v]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 200	4980	3300	14142	65928	14142	1414	2121	2121
								Tob 50

See verification under static load and lifetime on page SL-2 and SL-3

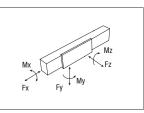
TCS 200

TCS 200 Dimension

Techn	ical	data	

	Туре
	TCS 200
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	8.6
Zero travel weight [kg]	39.7
Weight for 100 mm useful stroke [kg]	2.6
Starting torque [Nm]	4.8
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 60

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCS 200	32,697,979	12,893,004	45,860,983
			Tab. 61

Driving belt

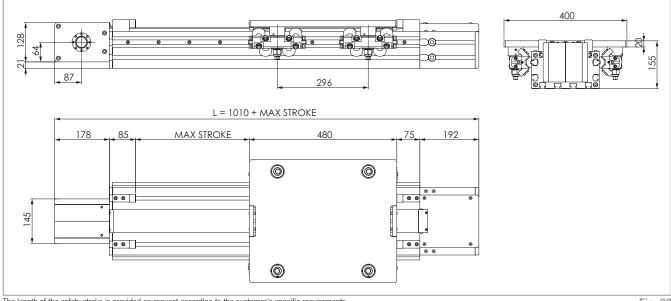
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 200	50 AT 10 HP	50	0.290
			Tab. 62

Belt length (mm) = 2 X L - 250

TCS 200 - Load capacity

Туре	[N]		[Ń]	[N ²]	[Nm]	[Nm]	[Nm]
S	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 200 4	4980 (3300	153600	70798	153600	7680	27648	27648


See verification under static load and lifetime on page SL-2 and SL-3

Tab. 63

Μ

TCR 220

TCR 220 Dimension

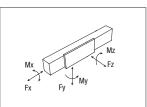
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 28

Technical data

	Туре
	TCR 220
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.3
Zero travel weight [kg]	60.1
Weight for 100 mm useful stroke [kg]	3.7
Starting torque [Nm]	5.8
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 64

Moments of inertia of the aluminum body

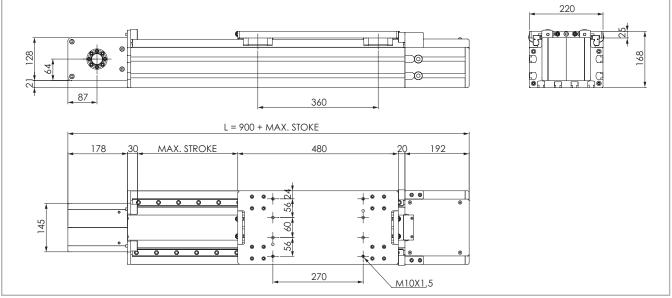

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCR 220	46,248,422	15,591,381	61,839,803
			Tab. 65

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 220	75 AT 10 HP	75	0.435
			Tab. 66

Belt length (mm) = 2 x L - 250


TCR 220 - Load capacity

Stat. Dyn. Stat. Dyn Stat. Stat. Stat.	[Nm]
	Stat.
TCR 220 7470 4950 14.142 65928 14142 1556 2093	2093

See verification under static load and lifetime on page SL-2 and SL-3

TCS 220

TCS 220 Dimension

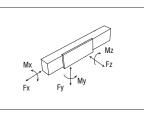
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 29

Technical data

iccinical uala	
	Туре
	TCS 220
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	9.5
Zero travel weight [kg]	49.3
Weight for 100 mm useful stroke [kg]	3.2
Starting torque [Nm]	6.9
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 68

Moments of inertia of the aluminum body


Туре	l [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCS 220	46,248,422	15,591,381	61,839,803
			Tab. 69

Driving belt

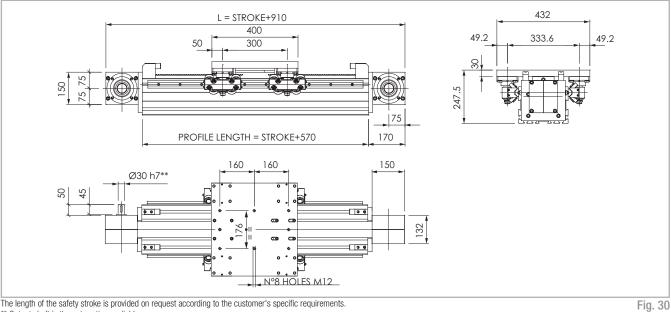
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 220	75 AT 10 HP	75	0.435
			Tab. 70

Belt length (mm) = 2 X L - 250

TCS 220 - Load capacity

Туре	F [1	: × V]	F [1	: v V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 220	7470	4950	258800	116833	258800	19410	46584	46584


See verification under static load and lifetime on page SL-2 and SL-3

Tab. 71

Μ

TCR 230 >

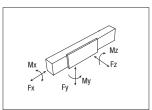
TCR 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. ** Output shaft is the only option available

Technical data

	Туре
	TCR 230
Max. useful stroke length [mm]	11430
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	75 AT 10
Type of pulley	Z 40
Pulley pitch diameter [mm]	127.32
Carriage displacement per pulley turn [mm]	400
Carriage weight [kg]	23.0
Zero travel weight [kg]	60
Weight for 100 mm useful stroke [kg]	3.3
Starting torque [Nm]	10.5
Moment of inertia of pulleys [g mm ²]	12020635
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 72

Moments of inertia of the aluminum body

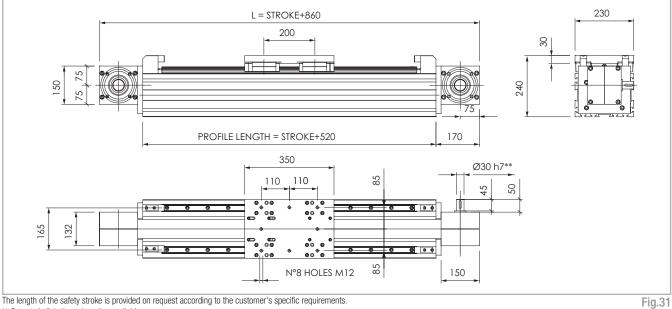

Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]	
TCR 230	65,009,000	37,783,000	102,792,000	
			Tab. 73	

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 230	75 AT 10	75	0.435
			Tab. 74

Belt length (mm) = 2 x L - 100


TCR 230 - Load capacity

Туре	F [1	: × V]	F [1	: y N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.		
TCR 230	7470	5220	14142	65928	14142	1626	2121	2121		
	Tab 75									

See verification under static load and lifetime on page SL-2 and SL-3

TCS 230

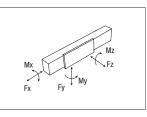
TCS 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. ** Output shaft is the only option available

Technical data

	Туре
	TCS 230
Max. useful stroke length [mm]	11480
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10
Type of pulley	Z 40
Pulley pitch diameter [mm]	127.32
Carriage displacement per pulley turn [mm]	400
Carriage weight [kg]	10.5
Zero travel weight [kg]	43.5
Weight for 100 mm useful stroke [kg]	3.7
Starting torque [Nm]	11.5
Moment of inertia of pulleys [g mm ²]	12020635
Rail size [mm]	30
1) Positioning repeatability is dependent on the type of transmission used	Tab. 76

Moments of inertia of the aluminum body


Туре	I _× [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
TCS 230	65,009,000	37,783,000	102,792,000
			Tab. 77

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 230	75 AT 10	75	0.435
			Tab. 48

Belt length (mm) = 2 X L - 60

TCS 230 - Load capacity

Туре	F, [N]		F [N	: y i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 230	7470	5220	355200	172074	355200	29304	35520	35520

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 79

Μ

TCR 280

TCR 280 Dimension

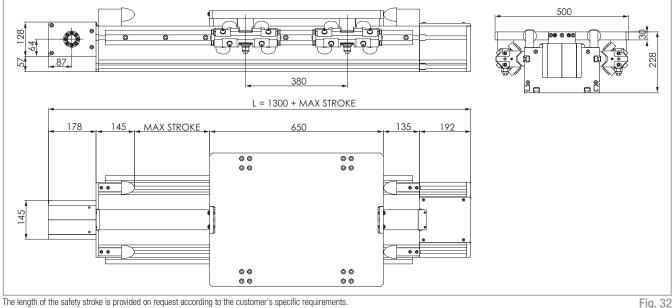
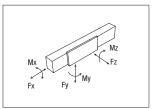


Fig. 32

Technical data

	Туре
	TCR 280
Max. useful stroke length [mm]	11070
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	47.3
Zero travel weight [kg]	126.1
Weight for 100 mm useful stroke [kg]	4.8
Starting torque [Nm]	8.5
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	55x25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 80

Moments of inertia of the aluminum body

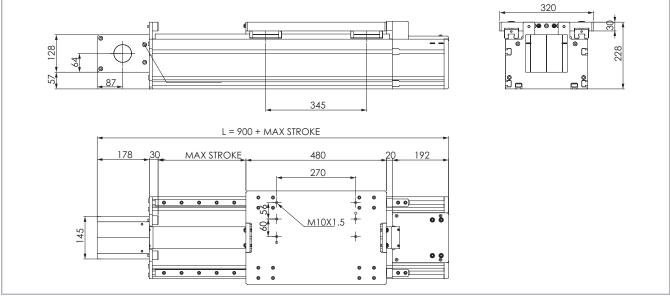

Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]	
TCR 280	126,456,500	48,292,512	174,749,312	
			Tab. 81	

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 280	75 AT 10 HP	75	0.435
			Tab. 82

Belt length (mm) = 2 x L - 230


TCR 280 - Load capacity

Туре	F [1	: Ň]	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 280	7470	4950	24042	112593	24042	3366	4568	4568
Cas varification under statio	lood and lifetim		0 and CL 0					Tab 00

See verification under static load and lifetime on page SL-2 and SL-3

TCS 280

TCS 280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 33

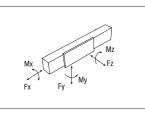
Technical data

	Туре
	TCS 280
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	18
Zero travel weight [kg]	65.1
Weight for 100 mm useful stroke [kg]	4.6
Starting torque [Nm]	8.3
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 84

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCS 280	126,456,800	48,292,512	174,749,312
			Tab. 85

Driving belt

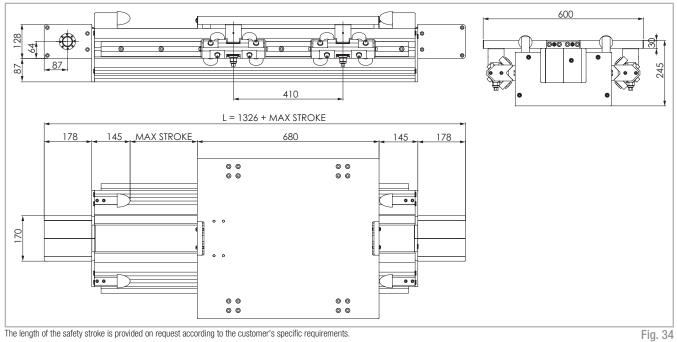

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 280	75 AT 10 HP	75	0.435

Tab. 86

Μ

Belt length (mm) = 2 X L - 230


TCS 280 - Load capacity

Туре	F [1	: × V]	F [1	: y i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 280	7470	4950	258800	116833	258800	31056	46584	46584

See verification under static load and lifetime on page SL-2 and SL-3

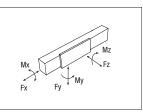
TCR 360

TCR 230 Dimension

Technical data

	Туре
	TCR 360
Max. useful stroke length [mm]	11030
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	10
Type of belt	100 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	56.3
Zero travel weight [kg]	163
Weight for 100 mm useful stroke [kg]	6.8
Starting torque [Nm]	8.5
Moment of inertia of pulleys [g mm ²]	14085272
Rail size [mm]	55x25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 88

Moments of inertia of the aluminum body

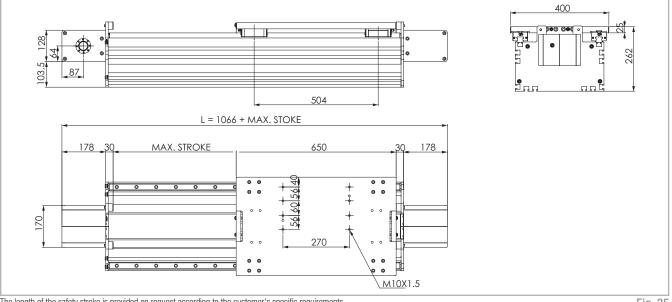

Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
TCR 360	317,212,806	103,285,258	420,498,064
			Tab. 89

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 360	100 AT 10 HP	100	0.58
			Tab. 90

Belt length (mm) =


TCR 360 - Load capacity

Туре	F [N	: × V]	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 360	9960	6600	24042	112593	24042	4327	4929	4929

See verification under static load and lifetime on page SL-2 and SL-3

TCS 360

TCS 360 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

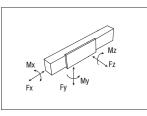
Fig. 35

Technical data

	Туре
	TCS 360
Max. useful stroke length [mm]	11290
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	100 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.2
Zero travel weight [kg]	104.6
Weight for 100 mm useful stroke [kg]	6.9
Starting torque [Nm]	8.3
Moment of inertia of pulleys [g mm ²]	14085272
Rail size [mm]	30
1) Positioning repeatability is dependent on the type of transmission used	Tab. 92

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCS 360	317,212,806	103,285,258	420,498,064
			Tab. 93


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 360	100 AT 10 HP	100	0.580

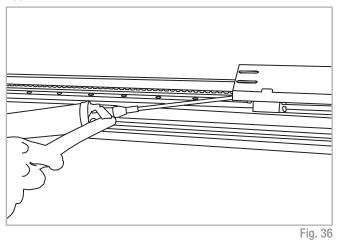
Tab. 94

Belt length (mm) = 2 X L - 260

TCS 360 - Load capacity

Туре	F []	: × V]	F, [N]		F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 360	9960	6600	266400	142231	266400	42624	61272	61272

See verification under static load and lifetime on page SL-2 and SL-3


Lubrication

TCS linear units with ball bearing guides

TCS Linear units are equipped with ball bearing carriage fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment. Lubrication interval between maintenance every 2000 Km or 1 year of use, based on the value reached first.

If a long service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

TCS

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Quantity of Grease [cm³]
TCS 140	1.4
TCS 170	1.4
TCS 200	1.4
TCS 220	2.0
TCS 230	4.2
TCS 280	2.0
TCS 360	3.2
	Tab. 96

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

TCR linear units with roller guides

Roller slides are provided with a permanent lubrication system which, if properly used, eliminates the need for any further maintenance, also considering the average life of any handling device. For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. Use lithium soap based mineral grease according to DIN 51825 - K3N.

If properly assembled, guide rails do not require any lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might be indicative of an excessive loading. In this case, all worn parts must be replaced and the load geometry and alignment checked.

Accessories

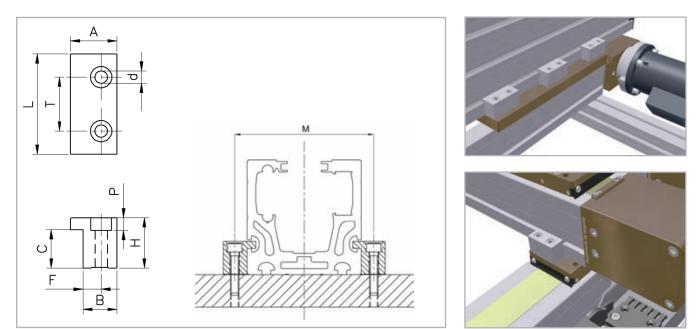
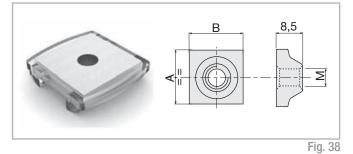


Fig.37

Material: aluminum alloy 6082

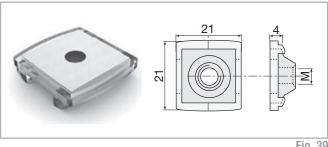
Unit	bxh	А	L	т	d	Н	Р	С	F	В	М	Code
TCR/TCS 170	120x170										198	
TCR/TCS 200	120x200	30	90	50	11	40	11	28.3	14	25	228	415.0762
TCR/TCS 220	120x220										248	
TCR/TCS 280	170x280	30	90	50	11	20	11	11.3	14	25	308	415.0763
TCR/TCS 280 Vert.	280x170	30	90	50	11	20	11	13.5	14	25	198	915.1174

Tab. 97


M L

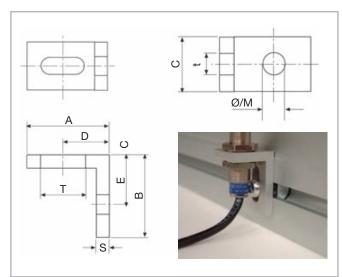
Semi-rounded threaded inserts with spring

Threaded plate for base profile 45, 50 and 60. Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.


Suitable for series:

TC 170-180-200-220-360

	P	AxB				
Thread	18x18	20x20				
M4	209.0031	209.0023				
M5	209.0032	209.0019				
M6	209.033	209.1202				
M8	209.0034	209.0467				
		Tab. 98				


Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18x18	101.0732
	Tab. 99

Fig. 39

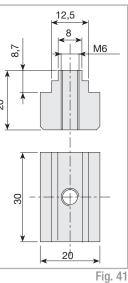
> Assembly brackets

Mater	Material: natural, anodized anticorodal alloy.								
Thre	ad	Со	de						
٨	D	C	D	F	C	Tut	(Å/NA	Ø	N.4
A	В	С	D	E	S	Txt	Ø/M	Ø	Μ
45	45	20	25	25	5	20X6.5	6	A30-76	A 30-86
35	25	20	19	15	5	20X6.5	4	A30-54	A30-64
35	25	20	19	15	5	20X6.5	5	A30-55	A30-65
35	25	20	19	15	5	20X6.5	6	A30-56	A30-66
25	25	15	14	15	4	13.5X5.5	3	B30-53	B30-63
25	25	14	14	15	4	13.5X5.5	4	B30-54	B30-64
25	25	15	14	15	4	13.5X5.5	5	B30-55	B30-65
25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66
Suitab	Suitable for all the modules Tab. 100								

...

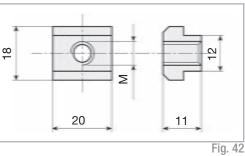
Fig. 40

 $\boldsymbol{M} = \text{Threaded version}$


 $\mathbf{Ø} = \mathsf{Passing} \mathsf{ trough} \mathsf{ hole} \mathsf{ version}$

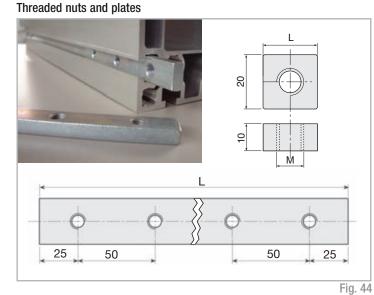
ML-36


Alignment nuts


Nuts for steel guide rails

Material: galvanised steel. Code 209.1855 Alignment nuts. V-shaped guide rail: 35x16 Profile with slot. 12.5 mm. Series: TC 170-200-220-280-360

Alignment nut for slot 12.5 mm



Alignment nut for slot 12.5 mm front insertable

30° 5 11

 $\begin{array}{l} \mbox{Material: galvanised steel. Suitable for series:} \\ \mbox{TC 170-200-280-360} \end{array}$

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 101

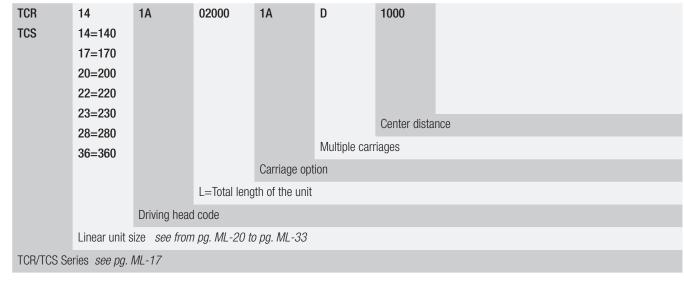
Material: galvanised steel. Suitable for series: TC 170-200-280-360

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab 100

Fig. 43

M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

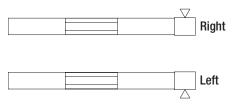
Material: galvanised steel. Suitable for series: TC 170-200-220-280-360


Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

* Hole centre-distance: 50 mm.

Tab. 102

Identification codes for the TCR/TCS series



Configure Actuator

0

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

ZCR/ZCH series description

Fig. 45

The ZCR/ZCH series linear units are designed to meet the vertical motion requirements in gantry applications or where the aluminum profile must be moving and the carriage must be fixed. The self-supporting extruded and anodized aluminum structure is available in different sizes from 60 to 220 mm. Being a rigid system, it is ideal for a "Z" axis in a 3-axis system. In addition, the ZCR/ZCH series has been specifically designed and configured to be easily assembled with the R-SMART, TCR/TCS series and ROBOT series.

ZCR

Features a dual Prismatic Rail system.

ZCH

Features a dual recirculating ball guide system.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon ZCR/ ZCH series linear units were designed and manufactured in cooperation with a leading company in this field, to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards. backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon ZCR/ZCH series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

Driving belt

The Rollon ZCR/ZCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 104

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6		J	Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K	<u>52</u> .111.10	0
2.7	70	23.8	200	880-900	33	600-655
						Tab. 105

Mechanical characteristics

Rm	Rp (02)	А	HB
N 	N 	%	_
250	200	10	75

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

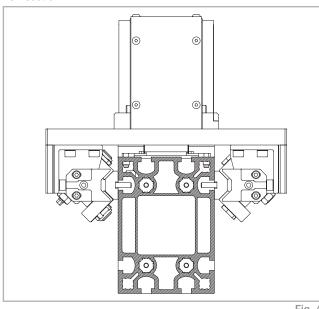
ZCR with Prismatic Rail:

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution ZCR is specifically dedicated for dirty environments and high dynamics in automation.

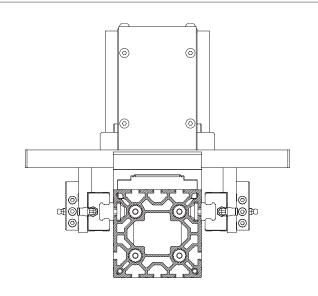
- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise

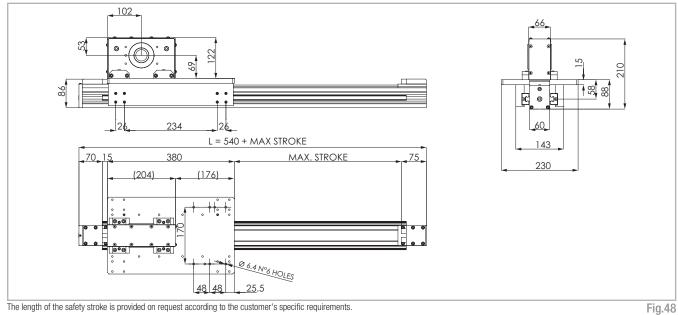

ZCH with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled on preloaded ball bearing blocks that allow to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides.


The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

ZCR section



ZCH section

ZCH 60

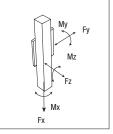
ZCH 60 Dimension

Technical data

	Туре
	ZCH 60
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	40
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	11.1
Zero travel weight [kg]	15.8
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.8
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 107

Moments of inertia of the aluminum body

Туре	l x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZCH 60	433,914	426,003	859,918
			Tab. 108


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 60	32 AT 10 HF	32	0.185
Delt Les ette (e	Tab. 109		

Belt length (mm) = L + 190

Μ

ZCH 60 - Load capacity

Туре	F [N	× Ň]	F [1	: y i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 60	2656	1760	61120	39780	61120	2216	7946	7946

See verification under static load and lifetime on page SL-2 and SL-3

ZCR 90 >

ZCR 90 Dimension

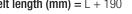
The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

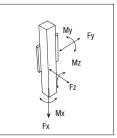
	Туре
	ZCR 90
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	11.6
Zero travel weight [kg]	19.4
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	1.8
Rail size [mm]	28.6x11
1) Positioning repeatability is dependent on the type of transmission used	Tab. 111

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZCR 90	1,969,731	1,950,080	3,919,811
			Tab. 112

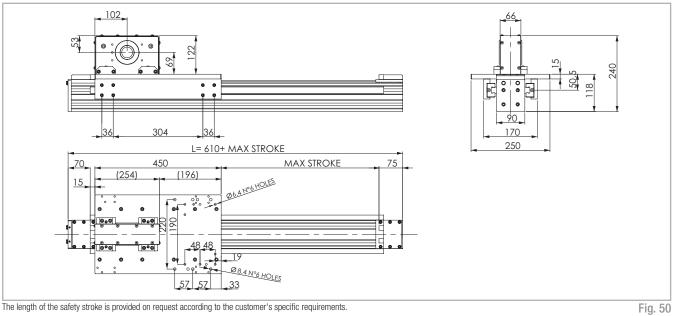

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 90	32 AT 10 HF	32	0.185
			Tah 113

Belt length (mm) = L + 190

Tab. 113


ZCR 90 - Load capacity

Туре	F [1	: Ň]	 [F Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCR 90	2656	1760	7637	28286	7637	344	1298	1298
								Tob 11/

See verification under static load and lifetime on page SL-2 and SL-3

ZCH 90

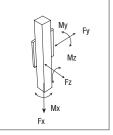
ZCH 90 Dimension

Technical data

	Туре
	ZCH 90
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	20
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	12.8
Zero travel weight [kg]	20.6
Weight for 100 mm useful stroke [kg]	1.3
Starting torque [Nm]	1.8
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 115

Moments of inertia of the aluminum body

Туре	I x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZCH 90	1,969,731	1,950,080	3,919,811
			Tab. 116

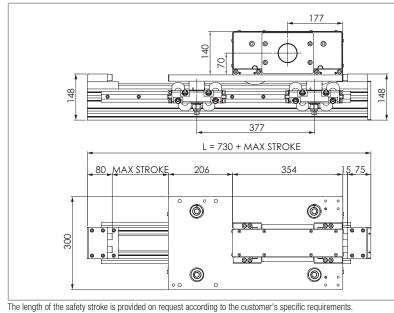

Driving belt

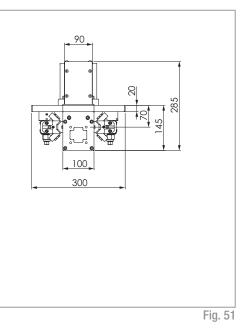
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 90	32 AT 10 HF	32	0.185
Delt Leventh (a	Tab. 117		

Belt length (mm) = L + 190

Μ


ZCH 90 - Load capacity


Stat. Dyn. Stat. Dyn Stat. St	Туре	F []	= Ň]	F. [N)	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
7CH 00 2656 1760 102520 73274 102520 5510 14865 14865		Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
	ZCH 90	2656	1760	102520	73274	102520	5510	14865	14865

See verification under static load and lifetime on page SL-2 and SL-3

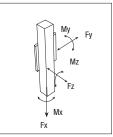
ZCR 100 >

ZCR 100 Dimension

Technical data

	Туре
	ZCR 100
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	27.6
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	1.3
Starting torque [Nm]	4.5
Rail size [mm]	35x16
 Positioning repeatability is dependent on the type of transmission used 	Tab. 119

Moments of inertia of the aluminum body

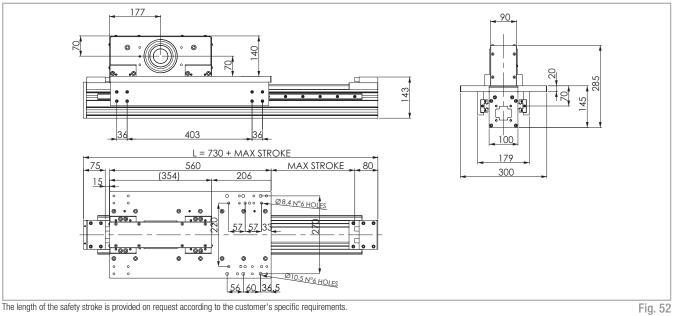

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZCR 100	3,637,190	3,457,193	7,094,383
			Tab. 120

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 100	50 AT 10 HPF	50	0.290
			Tab. 121

Belt length (mm) = L + 250


ZCR 100 - Load capacity

Туре	 	= Ň]	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 100	4980	3480	14142	65298	14142	707	2666	2666
								Teb 100

See verification under static load and lifetime on page SL-2 and SL-3

ZCH 100

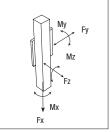
ZCH 100 Dimension

Technical data

	Туре
	ZCH 100
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.1
Zero travel weight [kg]	37.4
Weight for 100 mm useful stroke [kg]	1.5
Starting torque [Nm]	4.5
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 123

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	ly [mm⁴]	lր [10 ⁷ mm⁴]
ZCH 100	3,637,190	3,457,193	7,094,383
			Tab. 124

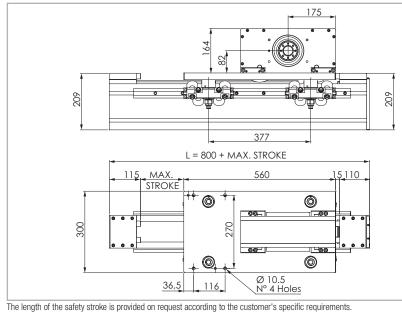

Driving belt

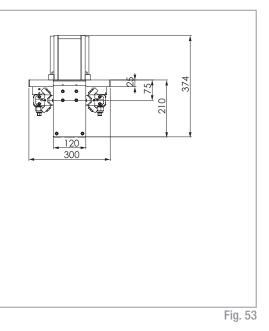
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 100	50 AT 10 HPF	50	0.290
Delt Les ette (e			Tab. 125

Belt length (mm) = L + 250

Μ


ZCH 100 - Load capacity


Stat. Dyn. Stat. Dyn Stat. St	Туре	 [F N]	F [1	: Ň	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
ZCH 100 4980 3480 102520 73274 102520 6023 22503 22503		Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
	ZCH 100	4980	3480	102520	73274	102520	6023	22503	22503

See verification under static load and lifetime on page SL-2 and SL-3

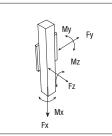
ZCR 170 >

ZCR 170 Dimension

Technical data

	Туре
	ZCR 170
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	32.5
Zero travel weight [kg]	55.4
Weight for 100 mm useful stroke [kg]	2.6
Starting torque [Nm]	7.8
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 127

Moments of inertia of the aluminum body

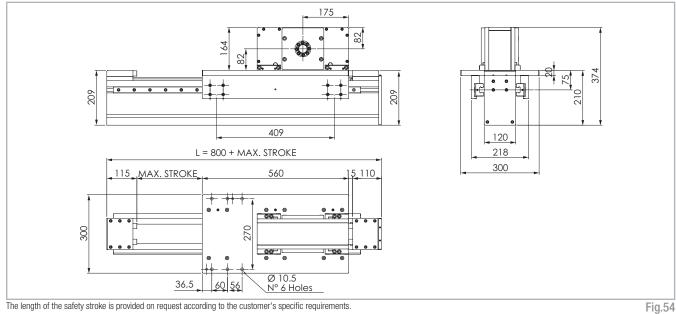

Туре	l _x [mm⁴]	l _y [mm⁴]	Ι _ρ [10 ⁷ mm⁴]
ZCR 170	19,734,283	9,835,781	29,570,064
			Tab. 128

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 170	75 AT 10 HPF	75	0.435
			Tab. 129

Belt length (mm) = L + 280


ZCR 170 - Load capacity

Туре	F []	: Ň]	F [N	: ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 170	7470	5220	14142	65298	14142	849	2666	2666
								Tab. 100

See verification under static load and lifetime on page SL-2 and SL-3

ZCH 170

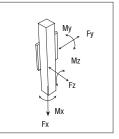
ZCH 170 Dimension

Technical data

	Туре
	ZCH 170
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	34.4
Zero travel weight [kg]	53.7
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	7.8
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 130

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZCH 170	19,734,283	9,835,781	29,570,064
			Tab. 131

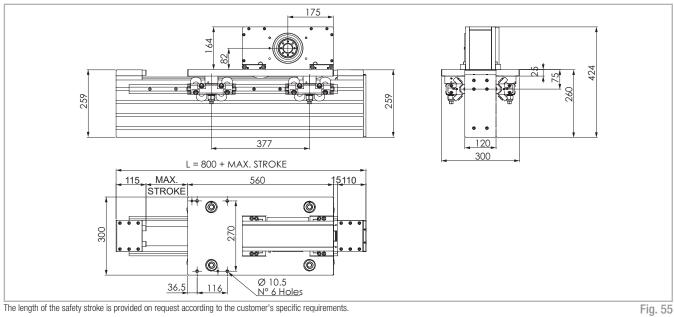

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 170	75 AT 10 HPF	75	0.435
Delt Leventhe (or		Tab. 132	

Belt length (mm) = L + 280

Μ


ZCH 170 - Load capacity

Туре	F [1	: X V]	F [N	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 170	7470	5220	174480	124770	174480	12388	35681	35681
								T 400

See verification under static load and lifetime on page SL-2 and SL-3

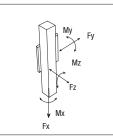
ZCR 220

ZCR 220 Dimension

Technical data

	Туре
	ZCR 220
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	32.5
Zero travel weight [kg]	61
Weight for 100 mm useful stroke [kg]	3.2
Starting torque [Nm]	7.8
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 134

Moments of inertia of the aluminum body

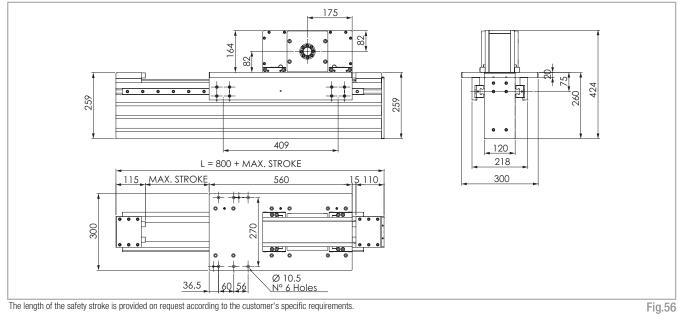

Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
ZCR 220	46,248,422	15,591,381	61,839,803
			Tab. 135

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 220	75 AT 10 HPF	75	0.435
			Tab. 136

Belt length (mm) = L + 280


ZCR 220 - Load capacity

Туре	F [1	: × V]	F [1	: y V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 220	7470	5220	14142	65298	14142	849	2666	2666
								Tab 197

See verification under static load and lifetime on page SL-2 and SL-3

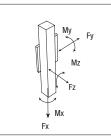
ZCH 220

ZCH 220 Dimension

Technical data

	Туре
	ZCH 220
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	34.4
Zero travel weight [kg]	60.7
Weight for 100 mm useful stroke [kg]	3.5
Starting torque [Nm]	7.8
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 138

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
ZCH 220	46,248,422	15,591,381	61,839,803
			Tab. 139

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 220	75 AT 10 HPF	75	0.435
			Tab. 140

Belt length (mm) = L + 280

ZCH 220 - Load capacity

	Туре	F [l	: Ň]	F [N	: y j]	F_ [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
		Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCH 220 7470 5220 174480 124770 174480 12388 35681 3566	ZCH 220	7470	5220	174480	124770	174480	12388	35681	35681

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 141

Μ

Lubrication

ZCH

ZCH linear units with ball bearing guides

The ball bearing carriages of the ZCH versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every

2000 Km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

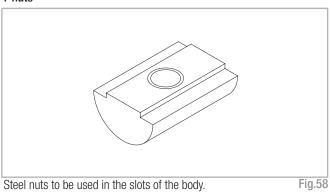
Fig.57

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Quantity of Grease [cm³]
ZCH 60	0.2
ZCH 90	0.5
ZCH 100	0.5
ZCH 170	0.6
ZCH 220	0.6
	Tab. 142

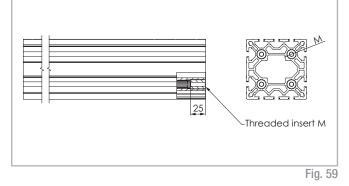
- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

ZCR linear units with roller guides


Roller slides are provided with a permanent lubrication system which, if properly used, eliminates the need for any further maintenance, also considering the average life of any handling device. For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. Use lithium soap based mineral grease according to DIN 51825 - K3N.

If properly assembled, guide rails do not require any lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might indicative of an excessive loading. In this case, all worn parts must be replaced and the load geometry and alignment checked.

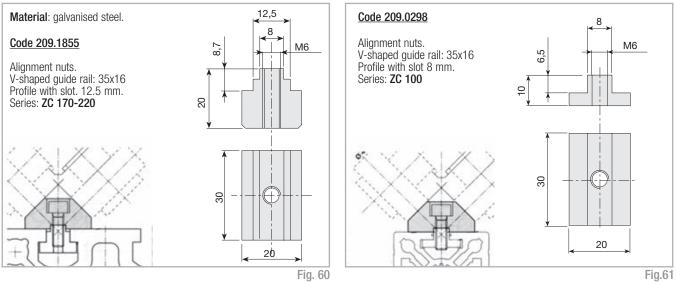
Accessories


To install accessories on ZCH series aluminum profile we recommend to use the T-nuts shown below

T-nuts

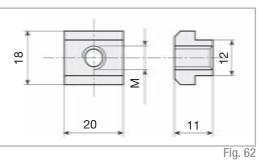
Units (mm)						
	Hole	Length	Code Rollon			
ZCH 60	M4	8	1001046			
ZCH 90	M5	10	1000627			
ZCH 100	M6	13	1000043			
ZCR 90	M4	8	1000627			
ZCR 100	M5	10	1000043			
			Tab. 143			

Bushings for ZCR/ZCH series


	Threaded insert Nb. x M			
ZCH 60	1 x M6	1 x M8	1 x M10	
ZCH 90	4 x M6	4 x M8	4 x M10	
ZCH 100	4 x M6	4 x M8	4 x M10	
ZCH 170		4 x M8	4 x M10	4 x M12
ZCH 220		4 x M8	4 x M10	4 x M12
				Tab. 144

Units (mm)

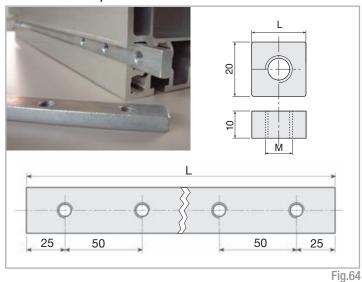
M L


Alignment nuts

Nuts for steel guide rails

Alignment nut for slot 12.5 mm

Σ


2

30°

Alignment nut for slot 12.5 mm front insertable

Threaded nuts and plates

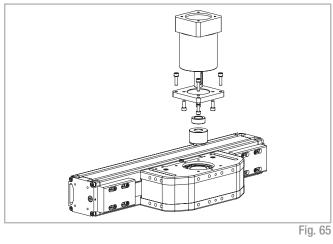
Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 145

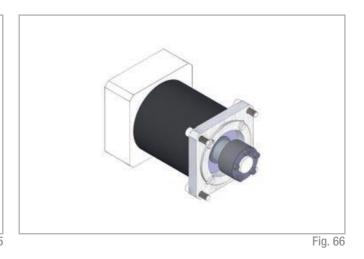
Material: galvanised steel. Suitable for series: ZC 170-220

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab. 146

Fig. 63

11

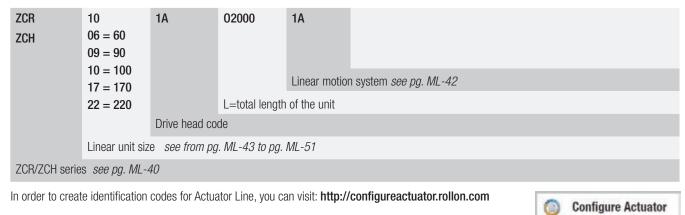

M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.


Material: galvanised steel. Suitable for series:

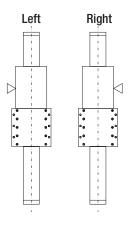
ZC 170-220						
Thread	Threaded holes	L	Code			
M10	1	40	215.0477			
M12	1	40	209.1281			
M10	1	20	209.1277			
M10	2*	80	209.1776			
M10	3*	150	209.1777			
M10	4*	200	209.1778			
M10	5*	250	209.1779			
M10	6*	300	209.1780			
M10	7*	350	209.1781			

* Hole centre-distance: 50 mm.

Adapter flange for gearbox assembly


Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type (not included)	Kit Code
	MP080	4001915
ZCH 60/90	CP080	4001970
	PSF221	4001917
	LP120; PE5; LC120	4001856
	SP100; P5	4001857
	PSF321	4001858
ZCH 100	PSF521	4001859
	EP120TT	4001860
	MP105	4001861
	MP080	4001951
		Tab. 148


For other gearbox type ask Rollon

Identification codes for the ZCR/ZCH linear unit

Left / right orientation

ZMCH series $// \sim$

ZMCH series description

Fig. 67

ZMCH

The ZMCH series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the aluminum profile must be moving and the carriage must be fixed.

The self-supporting extruded and anodized aluminum structure is available in three sizes. Since it is a rigid system, it is ideal for a "Z" axis in a 3-axis system by using a linear guide rail.

In addition, the ZMCH series has been specifically designed and configured to be easily assembled with the R-SMART, TCS/TCR series and ROBOT series.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon ZMCH series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards. characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon ZMCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 149

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
$\frac{\text{kg}}{\text{dm}^3}$	kN mm ²	10 ⁻⁶ 	W 	J kg . K	Ω . m . 10 ⁻⁹	°C
2.7	70	23.8	200	880-900	33	600-655
						Tab. 150

Mechanical characteristics

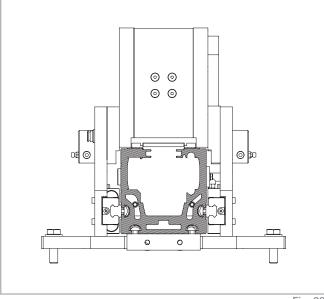
Rm	Rp (02)	А	HB
$\frac{N}{mm^2}$	N mm²	%	_
250	200	10	75 Tab. 151

The carriage of the Rollon ZMCH series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

Carriage

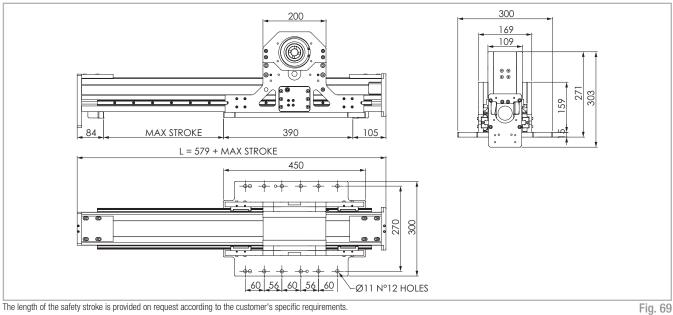
The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon ZMCH System series systems feature a linear motion system with ball bearing guides:


ZMCH with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on pre-loaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:


- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

ZMCH section

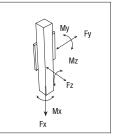
ZMCH 105 >

ZMCH 105 Dimension

Technical data

	Туре
	ZMCH 105
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 29
Pulley pitch diameter [mm]	92.31
Carriage displacement per pulley turn [mm]	290
Carriage weight [kg]	16.5
Zero travel weight [kg]	28
Weight for 100 mm useful stroke [kg]	1.5
Starting torque [Nm]	4.4
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 152

Moments of inertia of the aluminum body


Туре	l _x [mm ⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZMCH 105	5,675,808	4,476,959	10,152,767
			Tab. 153

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

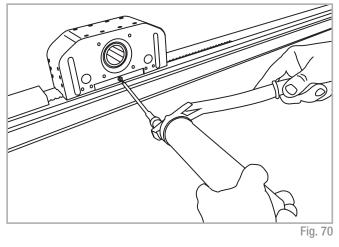
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZMCH 105	50 AT 10 HPF	50	0.290
			Tab. 154

Belt length (mm) = L + 260

ZMCH 105 - Load capacity

Туре	F _x [N]		F, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.	
ZMCH 105	4980	5850	61120	39780	61120	3591	10390	10390	
Tab 15									

See verification under static load and lifetime on page SL-2 and SL-3


Lubrication

ZMCH linear units with ball bearing guides

The ball bearing carriages are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

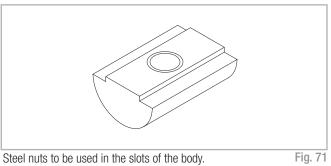
This system guarantees a long interval between maintenances: every 2000 km or 1 year of use, based on the value reached first. If a longer

ZMCH

service life is required or in case of high dynamic or high loaded applica-
tions please contact our offices for further verification.

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Quantity of Grease [cm³]
ZMCH 105	0.2
	Tab. 156

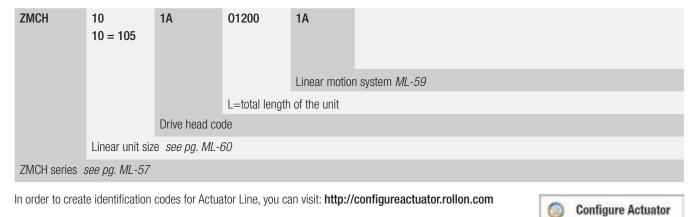

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

M L

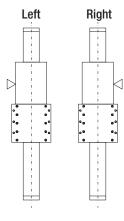
Accessories

To install accessories on ZMCH series aluminum profile we recommend to use the T-nuts shown below

T-nuts



Units (mm)


	Hole	Length	Code Rollon			
ZMCH 105	M4	8	1001046			
			Tab. 157			

Identification codes for the ZMCH series

Left / right orientation

Multiaxis systems // 🗸

1 - Two axis Y-Z system

2 - Two axis X-Y system


3 - Three axis X-Y-Z system

4 - Three Axis X-Y-Z system

5 - Two axis Y-Z system

Static load and service life

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

All load capacity values refer to the actuator well fixed to a rigid structure. For cantilever applications the deflection of the actuator profile must be taken in account.

Safety factor S₀

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7
	Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_{n} .

$$\frac{\mathsf{P}_{fy}}{\mathsf{F}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{P}_{fz}}{\mathsf{F}_{z}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{1}}{\mathsf{M}_{x}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{2}}{\mathsf{M}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{3}}{\mathsf{M}_{z}} \leq \frac{1}{\mathsf{S}_{0}}$$

Fig. 2

Fig. 3

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}} \qquad P_{fy} = \text{acting load (y direction) (N)} \\ P_{fz} = \text{acting load (z direction) (N)} \\ M_{1}, M_{2}, M_{3} = \text{external moments (Nm)} \\ M_{x}, M_{y}, M_{z} = \text{maximum allowed moments in the different load directions (Nm)} \end{cases}$$

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and vibrations	Speed / acceleration	Orietation	Safety Factor
No impacts	Low	horizontal	1.4
and/or vibrations	LUW	vertical	1.8
Light impacts	Medium	horizontal	1.7
and/or vibrations	IVIEUIUIII	vertical	2.2
Strong impacts	High	horizontal	2.2
and/or vibrations	High	vertical	3
			T 1 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$\begin{array}{ll} L_{km} & = \mbox{theoretical service life (km)} \\ Fz-dyn & = \mbox{dynamic load rating (N)} \\ P_{eq} & = \mbox{acting equivalent load (N)} \\ f_i & = \mbox{service factor (see tab. 2)} \end{array}$$

Fig. 4

The effective equivalent load P_{eq} is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot F_{y}$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f _i	
no shocks or vibrations, smooth and low-frequency changes in direction; (α < 5m/s ²) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s ² < α < 10 m/s ²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s ²) high contamination, very short stroke	> 3
	Tab. 2

Speedy Rail A Lifetime

The rated lifetime for SRA actuators is 80,000 Km.

Static load and service life Uniline

Static load

In the static load test, the radial load rating F_{y} , the axial load rating F_{z} , and the moments M_{x} , M_{y} und M_{z} indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_{0} is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5
	Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_n .

$$\frac{P_{fy}}{F_{y}} \leq \frac{1}{S_{0}} \qquad \frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}} \qquad \frac{M_{1}}{M_{x}} \leq \frac{1}{S_{0}} \qquad \frac{M_{2}}{M_{y}} \leq \frac{1}{S_{0}} \qquad \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

P _{fy}	= acting load (y direction) (N)
F _y	= static load rating (y direction) (N)
P _{fz}	= acting load (z direction) (N)
F _z	= static load rating (z direction) (N)
M ₁ , M ₂ , M ₃	= external moments (Nm)
M_x , M_y , M_z	= maximum allowed moments
,	in the different load directions (Nm)

Fig. 9

Fig. 8

Calculation formulae

Moments $\rm M_{v}$ and $\rm M_{z}$ for linear units with long slider plate

The allowed loads for the moments $M_{_y}$ and $M_{_z}$ depend on the length of the slider plate. The allowed moments $M_{_{Zn}}$ and $M_{_{yn}}$ for each slider plate length are calculated by the following formulae:

$$S_{n} = S_{min} + n \cdot \Delta S$$
$$M_{zn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{z min}$$
$$M_{yn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{y min}$$

M_{zn}	=	allowed moment (Nm)
$M_{z min}$	=	minimum values (Nm)
M _{yn}	=	allowed moment (Nm)
M _{y min}	=	minimum values (Nm)
S	=	length of the slider plate (mm)
S_{\min}	=	minimum length of the slider plate (mm)
ΔS	=	factor of the change in slider length
Κ	=	constant

Fig. 10

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270
					Tab. 3

Moments M_v and M_z for linear units with two slider plates

Μ.,

M₂

The allowed loads for the moments $\rm M_{y}$ and $\rm M_{z}$ are related to the value of the distance between the centers of the sliders. The allowed moments $\rm M_{_{\rm VN}}$ and $M_{_{\! 7\! 1\!}}$ for each distance between the centers of the sliders are calculated by the following formulae:

$$\begin{split} L_n &= L_{min} + n \cdot \Delta L \\ M_y &= allowed moment (Nm) \\ M_z &= allowed moment (Nm) \\ M_z &= allowed moment (Nm) \\ M_{y min} &= minimum values (Nm) \\ M_{z min} &= minimum values (Nm) \\ L_n &= distance between the centers of the sliders (mm) \\ L_{min} &= minimum value for the distance between the centers of the sliders (mm) \\ \Delta L &= factor of the change in slider length \end{split}$$

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8
				Tab. 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

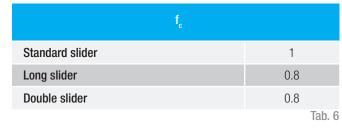
The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$\begin{array}{ll} \mathsf{L}_{\mathsf{km}} &= \text{theoretical service life (km)} \\ \mathsf{C} &= \text{dynamic load rating (N)} \\ \mathsf{P} &= \text{acting equivalent load (N)} \\ \mathsf{f}_{i} &= \text{service factor (see tab. 5)} \\ \mathsf{f}_{c} &= \text{contact factor (see tab. 6)} \\ \mathsf{f}_{h} &= \text{stroke factor (see fig. 13)} \end{array}$$

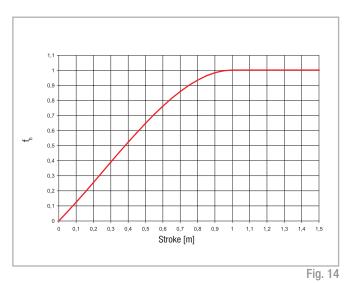
Fig. 12

$$P = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$


Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i


f,	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s) $$	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5
	Tab. 5

Contact factor f

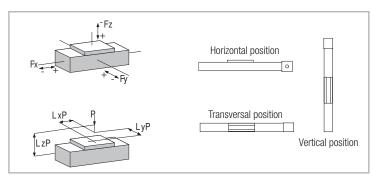
Stroke factor f_h

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

Determination of the motor torque

The torque C_{m} required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$


- C_m = torque of the motor (Nm)
- C_v = starting torque (Nm)
- F = force acting on the toothed belt (N)
- D_n = pitch diameter of pulley (m)

Data sheet 🛛 🗸

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
E-Mail:	

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated		Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		а	[m/s ²]			
Positioning repeatability		∆s	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

V

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON - SOUTH AMERICA (Rep. Office)

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp

Distributor

v

V

İkitelli OSB. Bedrettin Dalan Bulvarı Vip Plaza Kat:2 No:43-44 / 34490 Başakşehir - İSTANBUL Tel.: +90 444 20 38 Fax: +90 212 249 88 34 info@bibus.com.tr www.bibus.com.tr

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.

v